Содержание
- В каких батарейках есть графитовый стержень
- Преимущества и недостатки
- На что способен пауэрбанк от Prestigio
- Теперь это моя любимая «банка»
- Артём Баусов
- Проверяем работу
- Графеновые аккумуляторы
- Что такое графен?
- Разработаны дешевые батареи из отработанного графита и металлолома
- Графеновый аккумулятор для квадрокоптера
- Не революция, а эволюция
- Что это такое
- Актуальные разработки
- Как движется разработка современных графеновых аккумуляторов
- Читальный зал
- Решение проблемы века
В каких батарейках есть графитовый стержень
Солевая батарейка быстрее разгерметизируется в разряженном состоянии. Щелочной пофиг. Вообще надо сказать, что во-первых, проблема влияния батареек имеются в виду марганец-цинковые щелочные и солевые, произведенные в настоящий момент или в недалеком прошлом — то есть уже безртутные на экологию очень сильно преувеличена. Внутри них нет ничего особо токсичного. Электролит после разбавления и нейтрализации буферной системой почвы станет окружающей среде безразличен, цинк — необходимый микроэлемент, который будет медленно переходить в биодоступную форму, не создавая опасных концентраций растворимого цинка, двуокись марганца из положительного электрода вообще биологически недоступна.
Поиск данных по Вашему запросу:
Дождитесь окончания поиска во всех базах. По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>
Преимущества и недостатки
Чтобы сделать определённые выводы про графеновые аккумуляторы, стоит взглянуть на их плюсы и минусы.
Да, это перспективная технология. Да и имеющиеся достоинства об этом наглядно говорят. Хотя и без недостатков здесь не обошлось. Даже в условиях, когда массово батареи ещё даже не начали выпускать.
Если говорить про плюсы и минусы, которыми характеризуются графеновые аккумуляторы, то на эти АКБ стоит взглянуть со всех сторон.
Для начала о сильных качествах перспективной технологии:
Батареи имеют небольшой вес. Они значительно легче в сравнении со свинцово-кислотными аналогами или другими источниками питания, используемыми в автомобилях. На 1 квадратный метр графена приходится всего 0,77 грамма веса.
Высокие показатели проводимости. В плане этой характеристики графен в разы лучше, чем ряд других полупроводниковых материалов.
Прочность и водонепроницаемость. Также важные характеристики, учитывая условия эксплуатации автомобилей и прочего транспорта, где такие АКБ могут использоваться.
Экологичность. В отличие от свинца и жидкого электролита, АКБ на основе графеновой технологии не будут загрязнять окружающую среду
Это решение ещё одной важной современной проблемы.
Удельная ёмкость. Отличные показатели
Потенциально графеновые батареи способны демонстрировать около 1000 Вт/ч на 1 кг.
Возможность регулировки свойств. Это достигается за счёт сочетания и комбинирования с графена с другими используемыми материалами.
Доступность сырья. В качестве сырья для получения графена используется графит. А это распространённый, доступный и недорогой материал.
Но не всё так радужно. Технология имеет ряд недостатков.
Исследователи говорят, что из-за плотности сделать АКБ компактными невозможно. Поэтому перспективы использования технологии в мобильных устройствах сомнительные. Батареи получаются массивными. Специалисты пытаются решить этот вопрос. Но пока ни одного серийного образца не выпустили.
С позиции автомобильной сферы всё намного интереснее. Потенциальный переход на графеновую технологию способен увеличить пробег актуальной Tesla Model S с 400 до 1000 км. без подзарядки.
Электромобиль Tesla Model S
На саму подзарядку батареи потенциально достаточно потратить 10-15 минут. Но при условии наличия мощной зарядной станции. Специалисты уверены, что такой вопрос решается довольно легко.
Проблема в литии, который также применяется при создании графеновых источников питания. Этого вещества в природе не так много. Полностью удовлетворить потребности автомобильной отрасли не получится. Поэтому ведутся работы над тем, чтобы вместо лития использовать магний.
На что способен пауэрбанк от Prestigio
С вопросом материала разобрались. Теперь переходим непосредственно к самому аккумулятору.
Ёмкость батареи составляет 10 000 мАч. Причём реальные 10 тысяч, а не как любят писать различные производители с «небольшим округлением». Не так много, но лично мне хватает на 3 полные зарядки айфона. Этого вполне достаточно.
На борту нас встречает 3 разъёма для зарядки:
️ Два USB 3.0 с поддержкой быстрой зарядки 18 Вт
Идеально подходят для подпитки iPhone 11 и iPhone 11 Pro.
️ Один USB-C — заветный порт с поддержкой QC 3.0, способный восполнить заряд даже у ноутбука. Тоже на 18 Вт
Но это ещё не всё. Здесь также есть функция беспроводной зарядки по стандарту Qi. Причём инженеры разместили её почти по всей поверхности. Можно положить айфон и не париться о том, как его потом подвинуть, чтобы он точно заряжался.
Мощность БЗУ — 10 Вт. Жаль, что iPhone 11 с ней не намного активнее заряжается, но все равно быстрее, чем на какой-нибудь ноунейм «банке».
Что меня ещё порадовало, так это нормальная индикация. Если в большинстве пауэрбанков просто горит 4-5 точек, которые мало говорят об уровне заряда, то в Prestigio Graphene PD есть нормальный индикатор, отображающий оставшуюся ёмкость в процентах. Это намного понятнее.
Теперь это моя любимая «банка»
Через мои руки прошло колоссальное количество пауэрбанков: от ноунеймов и Xiaomi до InterStep и Samsung.
Свежая модель Prestigio выделяется среди них абсолютной всеядностью, прекрасной стабильностью и максимальной надёжностью. Заряжается, разряжается, поддерживает одинаковую ёмкость — всё работает как часы и соответствует паспортным данным.
И если другие гаджеты ломались быстро, то этому я доверяю на 100%. Думаю, через год или два он будет работать так же хорошо, как и сейчас.
iPhones.ru
Я просто в него влюбился.
Артём Баусов
Главный по новостям, кликбейту и опечаткам. Люблю электротехнику и занимаюсь огненной магией.
Telegram: @TemaBausov
Проверяем работу
Тестером проверяем напряжение на выводах батареи. Одно маленькое изделие длиной 4-5 см выдает до 0,5 – 0,6 Вольт напряжения. К трем последовательно соединенным батарейкам подсоединяем светодиод и вот, – появился свет, ток пошел, батарея заработала.
Батарейки можно поместить в контейнер, например – соломинку для коктейлей. Контейнер вставляем внутрь пастовой ручки с прозрачным корпусом. Перед этим из ручки вынимаем пишущий стержень, обрезаем его так, чтобы в корпусе поместились контейнер с тремя батарейками и светодиодом. Светящая ручка с батарейками из простого карандаша готова!
Простые самодельные устройства из подручных материалов по образованию электротока позволяют познать и понять природу электричества, как источника энергии, выполняющего реальную работу. Конструирование таких устройств имеет неоценимое образовательное значение для детей, заменяет сотни страниц учебных пособий, пытающихся объяснить, что же это такое – электричество.
И никакими мерками не измерить той неописуемой радости, когда все сделанное их руками вдруг волшебным образом засветится, замигает разноцветными светодиодами. Этим-то как раз и важны такие самоделки.
Графеновые аккумуляторы
«Инновационный углерод» нашел применение, в первую очередь, в автомобилестроении. Точнее – в производстве электромобилей. Повышенная активность заряженных частиц позволяет увеличить полезную емкость графеновых батарей.
У графена высокая электропроницаемость
На начальных этапах разработки этих источников питания, в листы графена добавляли литий. Но вещество «бурно» реагировало на воду и другие окислители, поэтому для промышленных задач эта схема оказалась малопригодной.
Литий, контактирующий с водой на открытой местности, приводит к масштабному взрыву. Поэтому такие модификации не устанавливались в автомобили, ведь, если транспортное средство повредится, а вместе с ним и аккумулятор – это может стать причиной возгорания.
Сам процесс производства требовал большого количества лития – вещества, которого на планете не так уж и много.
Батареи литий-графенового типа долго заряжаются, из-за чего в автомобильной отрасли с их применением начали возникать сложности. Новым источником питания стали магний-графеновые аккумуляторы, о которых еще пойдет речь.
Принцип действия аккумулятора аналогичен тому, как работают классические батареи в автомобилях с ДВС. Различаются только электрохимические процессы, проходящие в «теле» устройства. Они практически аналогичны реакциям литий-полимерных батарей.
Есть две технологии производства графеновых источников питания:
- американская модель. Источником реакции выступают кобальтат литий и катод из перемежающихся пластин кремния и графена;
- российская модель. Магний-графеновая модификация, в которой литиевую соль (анод) заменили на оксид магния (доступное и менее токсичное вещество).
У графена высокая электропроницаемость, а еще он склонен к накоплению электрозаряда. Поэтому в обоих случаях скорость движения ионов между электродами повышается, а вместе с этим и емкость батарей.
Что такое графен?
По сути, графен — это углерод, а углерод невероятно распространённый элемент на Земле. Графит, алмаз, сажа, графен — всё это углерод, а точнее, его аллотропные формы. Химическая формула у них идентична — «С», но то, как атомы углерода соединены друг с другом, и определяет свойства материала. Алмаз невероятно твёрдый, графит из грифеля карандаша легко можно сломать. Всё потому, что одни и те же атомы в графите и алмазе расположены по-разному.
Атомы в графене также расположены в пространстве особым образом. Во-первых, они выстроены толщиной в один атом. Во-вторых, атомы образуют шестиугольник, похожий на пчелиную соту:
Такая структура наделяет графен просто невероятными свойствами.
Графен — отличный проводник как электронов, так и тепла. Графен прочнее стали в 200 раз, при этом он невероятно гибкий, эластичный и почти прозрачный.
Из-за таких свойств графен получил огромную популярность в среде учёных: ему за пару лет придумали сотни сомнительных применений. В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помёт, чтобы проверить, как это отразится на его качествах.
Благодаря такому хайпу вокруг графена, на рынке появились графеновые куртки, платья, теннисные ракетки, машинное масло с графеном и ещё куча всякого бесполезного барахла, которое зачастую графена в своём составе не имело, а в лучшем случае графена добавляли сотые доли процента.
Дело в том, что чистый графен — чрезвычайно дорогой материал:
- Один грамм чистого графена, который используют в электронике, стоит около $28 млрд;
- Один грамм графена, смешанного с пылью, стоит около $1000.
Может ли графен решить проблемы батарей?
До сих пор человечество не знает коммерчески успешных способов получения графена в промышленных масштабах. Высокая цена и трудности производства больших количеств графена — это одна из причин, почему мы не видим графеновых аккумуляторов в наших смартфонах. Но это не единственная причина. Использование графена в качестве катода или анода в батареях — не лучшая идея.
Именно поэтому графен не самый подходящий материал для долгосрочного хранения энергии.
В литиевых аккумуляторах заряд запасается за счёт того, что ионы лития проникают внутрь графитового анода и там прочно держатся. Этот процесс называется интеркаляцией. Литиевые аккумуляторы практически не подвержены саморазряду. Вы можете зарядить ваш Power Bank и через 2 месяца им воспользоваться.
Если мы возьмём батарею и вместо графита для изготовления анода применим графен, то ионы лития не смогут проникнуть внутрь графена, а будут накапливаться на поверхности. В таком случае ионы будут держаться за анод очень слабо, со временем ионы могут самопроизвольно покидать графен. В итоге мы получим саморазряд батарей.
Вариант, когда ионы накапливаются на поверхности анода и слабо за него держатся, хорошо подходит для суперконденсаторов. Это отличный вариант, когда нужно быстро и без особых усилий оторвать много ионов и перенести много энергии за короткий отрезок времени. Поэтому применение графена выглядит куда логичнее именно в суперконденсаторах, а вот для обычных аккумуляторов графен не особо подходит.
Но ведь графеновые аккумуляторы уже давно продаются
Мы регулярно слышим, что тот или иной стартап уже запустил в продажу графеновые Power Bank. Периодически проскакивают новости о том, что гиганты вроде Samsung уже буквально завтра начнут ставить в свои смартфоны графеновые батареи. На самом деле это очередная маркетинговая уловка. В таких батареях графен применяется как добавка для улучшения тех или иных характеристик литиевых батарей.
Например, если мы добавим графен в электроды, то повысим их проводимость. По сути, это останется всё такой же литиевый аккумулятор, характеристики которого улучшены графеном на 5–10 %. Подобных продуктов уже полно на рынке. Одним из первых смартфонов на моей памяти с применением графена в батарее был Honor Magic. Но какими-то выдающимися характеристиками его батарея не запомнилась.
Не так давно Наташа уже делала видео про Power Bank с графеном:
По сути, графеновые Power Bank отличаются от обычных только быстрой зарядкой. По большому счёту эти «банки» всё так же греются при зарядке и имеют заурядную ёмкость.
Чисто графеновые батареи на данном этапе развития технологий — это, скорее, маркетинг на хайповой теме. А вот литиевые гибриды, в которых графен используется как вспомогательный компонент, давно применяются. Samsung, Xiaomi, OPPO, OnePlus, Huawei и другие бренды вовсю добавляют графен в свои батареи.
Разработаны дешевые батареи из отработанного графита и металлолома
Литий-ионные аккумуляторы иногда воспламеняются, а стоимость сырья для них растет, что заставляет ученых и инженеров искать альтернативы. Исследователи из Швейцарской федеральной лаборатории материаловедения и технологий (Empa) и Швейцарской высшей технологической школы Цюриха (ETH Zurich) заявляют, что их разработки позволят производить батареи из отработанного графита и металлолома, пишет Science Daily.
Исследовательская группа Максима Коваленко базируется в ETH Zurich и в Лаборатории тонких пленок и фотоэлектрических систем Empa. Амбициозная цель команды — создать батарею из наиболее распространенных элементов земной коры, таких как магний или алюминий, что позволило бы быстро увеличить производство аккумуляторов простым и недорогим способом. К тому же эти материалы безопасны в использовании, даже если анод изготовлен из чистого металла.
В традиционных батареях электрический ток возникает за счет катионов металлов, перемещающихся между анодом и катодом и обратно. В качестве альтернативы можно использовать большие, но легкие органические анионы. Однако это порождает ряд вопросов: в какой среде должны перемещаться эти легкие анионы и какой материал подойдет для изготовления катода? В литий-ионных батареях катод изготовлен из оксида металла, который может легко поглощать небольшие катионы лития во время зарядки. Однако большие органические ионы слишком велики и имеют заряд, противоположный заряду катионов лития.
Чтобы решить эту проблему, команда Коваленко поставила принцип литий-ионной батареи с ног на голову. В обычных литий-ионных батареях анод выполнен из графита, слои которого в заряженном состоянии содержат ионы лития. Напротив, в батарее Коваленко графит используется как катод, а крупные анионы осаждаются между слоями графена. Анод, в свою очередь, сделан из металла.
Сотрудник лаборатории Константин Кравчик обнаружил, что в качестве доступного материала для катодов может использоваться отработанный в ходе производства стали графит, так называемая графитовая спель. Так же хорошо подходит естественный графит, поставляемый в виде хлопьев и имеющий открытую молекулярную структуру, куда могут легче проникать крупные анионы. В то же время мелкозернистый графит, обычно используемый в литий-ионных батареях, не подходит для батареи Коваленко: в таком графите слои смяты, и внутрь способны проникать лишь небольшие литиевые катионы.
Батарея с катодом, изготовленным из графитовой спели или необработанных графитовых хлопьев, может стать очень рентабельной. И, как показали первые эксперименты, долговечной: лабораторный прототип в течение нескольких месяцев пережил тысячи циклов зарядки и разрядки. По словам членов команды, аккумулятор на основе хлорида алюминия и графита может эксплуатироваться в течение десятилетий в повседневном бытовом использовании. В настоящее время исследовательская группа работает над увеличением напряжения батареи и плотности энергии.
Графеновый аккумулятор для квадрокоптера
Любой летательный аппарат эффективности полета и его дальности обязан бортовой АКБ. При выборе источника энергии важны емкость, токоотдача, вес и габариты. До появления графеновых аккумуляторов непревзойденными качествами обладали литий-полимерные. Но они склонны к возгоранию при перезаряде и нагревании. Этих недостатков лишены магний графеновые аккумуляторы. Купить некоторые из образцов уже возможно.
Лучшим считается аккумулятор в жестком корпусе Turnigy Graphene 5000 mAh 2S2P. Новая батарея поддерживает высокую выходную мощность, под нагрузкой остается холодной. При этом батарея обеспечивает разряд 90С постоянно и 130С кратковременно. Вес конструкции с проводами и разъемами 291 грамм. Заряжается быстро с потреблением тока до 15 С, от LiPo зарядки.
Есть и другие аккумуляторы, разработанные на основе графеновых составляющих от разработчика Graphene. К ним относится:
- модель FlyMod от компании ONBO Power;
- Dinogy Ultra Graphene 02 4S 80C – вторая доработанная модель;
- Thunder Power Adrenaline – лучшие модели для продолжительных полетов.
Не революция, а эволюция
Если посмотреть на литиевые аккумуляторы под другим углом, то окажется, что они вовсе не стоят на месте, а постоянно развиваются — просто это развитие не скачкообразное, а очень плавное и постепенное. И самое главное: технология литиевых аккумуляторов ещё не достигла своего предела, и, возможно, графен поможет раскрыть потенциал литиевых аккумуляторов на 100 %.
Ёмкость аккумуляторов
Нам кажется, что увеличения ёмкости литиевых аккумуляторов нет, но это не так. Первые из них могли запасать порядка 100 Вт·ч/кг, спустя 20 лет постепенного развития эта величина удвоилась. На данный момент литиевые аккумуляторы могут запасать 200–240 Вт·ч/кг. По мнению учёных, им удастся увеличить энергоёмкость до 400 Вт·ч/кг. И, вполне возможно, именно графен поможет приблизить этот показатель к реальности.
Скорость зарядки
Это ещё один важный параметр, который уже сейчас улучшают за счёт графена. Так как графен имеет низкое сопротивление и прекрасно проводит ток, компоненты с добавлением графена меньше греются. Кроме того, графен столь же хорошо проводит и тепло, благодаря этому нагрев компонентов батареи лучше рассеивается.
В последние годы мы видим, как стремительно развиваются технологии быстрой зарядки. Не так давно гремели презентации технологий быстрых зарядок мощностью 120 Вт. И вот совсем недавно Xiaomi показала зарядку мощностью 200 Вт, которая наполняет батарею Mi 11 Pro ёмкостью 4000 мАч за восемь минут. Скорее всего, в батарее этого Mi 11 Pro не обошлось без добавления графена, но Xiaomi об этом умалчивает.
Чувствительность к температуре
Что пока не удалось значительно улучшить, так это чувствительность батарей к перепадам температуры и количество циклов заряда-разряда. В этих вопросах пока даже графен животворящий особо помочь не может. Точнее, графен помогает частично нивелировать негативное воздействие перегрева, а вот с низкими температурами бороться у него не выходит.
Продление срока службы
Что касается увеличения количества циклов заряда-разряда, то тут в помощь приходит другой компонент — кремний. Он позволяет увеличить ресурс литиевых батарей до 300 %, но побочный эффект кремния — увеличение размеров аккумуляторов. В итоге батареи с кремнием либо будут иметь такую же ёмкость, как и сейчас, но при этом будут физически в несколько раз больше, либо мы можем сделать компактную и долгоживущую батарею, которая будет иметь маленькую ёмкость.
Что это такое
Специалисты давно ведут работу над поиском материалов, которые можно эффективно использовать для создания АКБ. Но пока свинцовые пластины так и остаются основой. Они совершенно не удовлетворяют запросы современных электромобилей и экологического транспорта.
Огромный шаг вперёд в этом направлении удалось сделать в 2004 году. Именно тогда двоё учёных из Великобритании сумели создать в лабораторных условиях новое вещество. Оно изготовлено на основе углерода и носит название графен. Через 6 лет за свою разработку они удостоились Нобелевской премии.
Графен — это одна из разновидностей графита. В состав вещества входят атомы углерода. Кристаллы материала напоминают листы бумаги, которые сложены в большое количество слоёв.
Кристаллическая структура графена
Тут стоит учесть свойства графита. Его атомное взаимодействие между слоями является слабее, нежели в середине. Из-за этого графит широко применяют при производстве карандашей. В итоге учёные расщепили графит на слои, и создали новое вещество. Свойства получились такими же, только усиленными в несколько раз.
Подобные разработки дали новый серьёзный толчок в развитии электроники, а также новых видов батарей и аккумуляторов. Графит по своей природе обладает высокой электропроводностью и отлично проводит тепло. В итоге графен стал заменителем для целого ряда дорогостоящих материалов. Поскольку графит доступен в природе в больших количествах, то с производством графена на его основе проблем не возникает.
Актуальные разработки
Уже сейчас на рынке представлены зарядные блоки (powerbank) от компании Real Graphene. Они основаны на графеновой технологии и позволяют за считанные минуты зарядить смартфон или планшет.
Их аккумулятор способен выдержать порядка 1500 циклов зарядки, не теряя свои изначальные технические характеристики. При этом девайс не генерирует большое количество тепла, остаётся холодным и безопасным во время работы.
Если говорить про машины, то буквально недавно китайская компания GAC заявила о том, что собирается тестировать графеновые источники питания. Их установят на автомобиль и проверят в реальных условиях эксплуатации.
Китайцы считают, что электромобиль с таким источником питания сможет получить 85% заряда всего за 8 минут.
Первые тесты ожидаются в конце 2021 года, либо в начале 2021 года. Пандемия внесла свои коррективы. В итоге результаты покажут, будет ли компания запускать массовое производство.
Ожидаемая стоимость нового электрического китайского автомобиля составит 30,5 тысяч долларов. При этом порядка 40% от стоимости это цена батареи.
Схема разработки 3DG
Графеновую технологию специалисты GAC начали осваивать ещё с 2014 году. За 4 лет активной работы удалось создать 3DG. Это трёхмерный графеновый материал. В ноябре 2021 года была официально проведена презентация сверхбыстрой аккумуляторной батареи для зарядки.
Как движется разработка современных графеновых аккумуляторов
Если говорить о промышленных масштабах, то разработкой этого материала занимается испанская фирма Graphenano. Ее инженерам удалось создать графеновую батарею, стоимость которой на 70% ниже, чем у других производителей. Тестирования нового аккумулятора показало увеличение пробега электромобиля до 1000 км. Его полная зарядка происходит в течение 7 минут. Вес такой батареи намного меньше массы литий-ионного аналога, имеющего похожие характеристики.
В 2015 году фирма Graphenano создала в Испании большое предприятие, занимающееся производством графеновых аккумуляторов. В открытии участвовали инженеры фирмы Grabat Energy, а также ученые Кордовского университета. Мощности завода позволяют выпускать 80 миллионов ячеек в год. Выпуск новых графен-полимерных аккумуляторов ожидался в начале 2017 года. Однако, изделия выпущенного на этом предприятии, пока еще никто не видел.
Руководство Graphenano утверждает, что новые графеновые батареи для электромобилей, будут пожаробезопасными, полностью защищенными от возникновения короткого замыкания. Специальный полимерный материал, который необходим для создания прибора, разработали немецкие ученые из института TUV, совместно с учеными из испанского университета Декра.
Немецкие концерны уже начали сегодня тестировать на собственных автомобилях продукцию Graphenano.
США также занимались созданием таких изделий. Основная работа касалась увеличения емкости батареи, достижения быстрой зарядки. Принцип действия таких АКБ аналогичен литиевым изделиям. Емкость батареи зависимости от числа ионов, находящихся в кристаллической решетке анода (катода).
Активность движения таких ионов оказывает серьезное влияние на быстроту зарядки. Для достижения большей ёмкости, ученые установили между слоями графена специальные кремниевые кластеры. Чтобы скорость заряда стала намного быстрее, в пластинах материала были сделаны отверстия, величиной 15–20 нанометров. Они способствовали ускорению движения ионов лития
Ученые австралийского университета Monash, при разработке графеновой батареи, стремились достичь стабильного состояния аккумулятора. Дело в том, что это материал постоянно стремится превратиться в обыкновенный графит. Если это происходит, уникальные характеристики полностью исчезают. Австралийским учёным удалось решить эту проблему. Они превратили графеновые пластины в водянистый гель. По их мнению, если аккумулятор будет состоять из такого геля, батарея будет заряжаться в течение нескольких секунд.
Ученые университета Monash, решили поместить этот материал в гелиевый раствор. В результате, пластины перестали слипаться, стало поддерживаться стабильное состояние вещества. Такие изменения позволили использовать материал и для создания других конструкций. Для получения гелия применялось два компонента:
Производство гелиевого раствора не требует больших финансовых затрат. Аккумулятор на таком растворе отличается сильным электрическим зарядом, который на порядок превосходит аналогичные показатели литий-ионных АКБ. Такие передовые разработки обещают коммерческий успех, однако серийных образцов до сих пор нет.
В России разработка графеновых аккумуляторов связана с использованием магния, который должен заменить литий. Российские ученые считают приоритетным направлением применение графеновых изделий в автомобилестроении, ветряной или солнечной энергетике.
Разработкой новейших аккумуляторов для электромобилей в России, занимается компания «Конгран». Инженеры пытаются создать прибор, мощность которого будет намного превышать все имеющиеся, современные аналоги. Причем стоимость таких устройств будет гораздо дешевле.
Российские ученые предложили устанавливать катод, сделанный из гипероксидированного графена. Анод должен состоять полностью из чистого магния. Все аккумуляторы работают по одному принципу. В них происходит реакция окисления вещества и его дальнейшее восстановление.
Для проведения такой реакции полностью подходит магний. Он стоит намного меньше лития. Это вещество не имеет недостатков, характерных для лития. К примеру, на воздухе литий начинает мощную реакцию с водой, он очень сложен для утилизации. Магниевый анод придает такой батареи большую энергетическую емкость. Технологический процесс добычи магния аналогичен получению алюминия. Довольно часто магний находят в глине.
Читальный зал
О.Ольгин. Опыты без взрывов
Представьте, что случилось такое: вы принялись за электрохимический опыт, собрали цепь — а батарейка вдруг «села», и запасной батарейки нет. Как быть? Но это еще полбеды. Гораздо хуже, когда карманный фонарик гаснет темным вечером, да еще в лесу. И как обидно, если батарейки транзисторного приемника отказывают как раз в ту минуту, когда по радио передают вашу любимую песню, или во время трансляции футбольного матча. Но что уж тут поделаешь.
А между тем кое-что предпринять можно. Если запасной батарейки нет, не спешите выбрасывать старую, а попробуйте ее «оживить».
Многие современные батарейки — «Крона», «Марс», «Сатурн», КБС и другие — состоят из элементов марганцево-цинковой системы
. При работе отрицательный электрод этих батареек —цинковый стаканчик — постепенно, но очень медленно, растворяется, а положительный электрод —диоксид марганца МnО2, восстанавливается дометагидроксида марганца (его формулу можно представить как МnООН). Он постепенно покрывает зерна оксида, проникает вглубь зерен и закрывает доступ электролиту. Еще и половина диоксида марганца не использована, а элемент уже перестает работать; цинка же к тому времени остается еще больше, до четырех пятых! Словом, почти годную батарейку приходится выбрасывать.
Решение проблемы века
Графеновый аккумулятор работает по тому же принципу, что и свинцовые с щелочным или кислотным электролитом. Этим принципом является электрохимическая реакция. По устройству графеновый аккумулятор схож с литиево-ионным с твердым электролитом, в котором катодом является угольный кокс, близкий по составу к чистому углероду.
Однако уже сейчас среди инженеров, разрабатывающих графеновые аккумуляторы, есть два принципиально разных направления. В США ученые предложили делать катод из пластин графена и кремния, перемежающихся между собой, а анод — из классического кобальта лития. Российские инженеры нашли другое решение. Токсичная и дорогая литиевая соль может быть заменена более экологичным и дешевым оксидом магния. Емкость аккумулятора увеличивается в любом случае за счет повышения скорости прохождения ионов от одного электрода к другому. Это достигается вследствие того, что графен обладает высоким показателем электрической проницаемости и способностью к накоплению электрического заряда.
Мнения ученых относительно инноваций разделяются: российские инженеры утверждают, что графеновые аккумуляторы имеют емкость в два раза больше, чем литий-ионные, а вот их зарубежные коллеги утверждают, что в десять.
Графеновые аккумуляторы запущены в массовое производство в 2015 году. К примеру, этим занимается испанская компания Graphenano. По словам производителя, использование этих аккумуляторов в электрокарах на логистических площадках показывает реальные практические возможности батареи с графеновым катодом. Для полной зарядки ему требуется всего восемь минут. Максимальную длину пробега также способны увеличить графеновые аккумуляторы. Зарядка на 1000 км вместо трехсот — вот что хочет предложить потребителю корпорация Graphenano.