Содержание
- Хронология уменьшения размера технологического процесса
- О компании TSMC
- Новый техпроцесс, старая стратегия
- Какие бывают техпроцессы?
- Три этапа стратегии
- Чем меньше нанометров в технологическом процессе, тем:
- Хронология уменьшения размера технологического процесса
- «Отстает» и отечественная производственная база
- Сферы использования
- Так почему же эти новые процессы так важны?
- Что такое «7 нм техпроцесс»?
- Что «nm» на самом деле означает
- Чем меньше нанометров в технологическом процессе, тем:
- Семимильными шагами
- Что даёт 7 нм техпроцесс?
- Новые графические ускорители Vega и планы на будущее
- Где применяются процессоры
- Что такое техпроцесс
Хронология уменьшения размера технологического процесса
’70-е:
3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
- 1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
- 0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
- 0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
- 350 нм — Intel, IBM, TSMC к 1997-му;
- 250 нм — Intel, 1998 год;
- 180 нм — Intel и AMD, 1999 год.
’00-е:
- 130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
- 90 нм — Intel в 2002–2003 годах;
- 65 нм — Intel в 2004–2006 годах;
- 45–40 нм — Intel в 2006–2007 годах;
- 32–28 нм — Intel в 2009–2010 годах;
- 22–20 нм — Intel в 2009–2012 годах;
’10-е:
- 14–16 нм — Intel наладила производство таких процессоров к 2015 году;
- 10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2020 году;
- 7 нм — TSMC, 2020 год;
- 6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
- 5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
- 3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
О компании TSMC
Тайваньская TSMC, согласно данным Statista.com, является крупнейшим мировым контрактным производителем полупроводниковой продукции. По итогам первого квартала 2020 г. на TSMC пришлось 54,1% выручки всей индустрии, на втором месте была Samsung с долей 15,1%, третье место с 7,7% занимала Global Foundries. Рынок контрактного производства полупроводников, по данным Bloomberg, сегодня оценивается примерно в $250 млрд ежегодно.
Позиции TSMC на глобальном рынке контрактного производства полупроводников
TSMC занимается контрактным производством процессоров и других полупроводниковых компонентов для множества мировых компаний, включая MediaTek, AMD, Apple, Qualcomm и до недавнего времени Huawei.
В рамках пресс-конференции для акционеров TSMC объявила о том, что в мае 2020 г. чистая выручка в консолидированном исчислении составила порядка 93,82 млрд новых тайваньских долларов (около $3,17 млрд), что на 2,3% меньше чем в апреле 2020 г., но на 16,6% больше чем в мае предыдущего года. Выручка TSMC за период с января по май 2020 г. составила 500,42 млрд новых тайваньских долларов (около $16,91 млрд), что на 33,9% больше по сравнению с аналогичным периодом 2019 г.
По итогам 2019 г. выручка TSMC составила рекордные 1,07 трлн новых тайваньских долларов (около $34,63 млрд), что на 3,7% больше в сравнении с показателями 2018 г. Порядка 49% от всей выручки компании в 2019 г. составили продажи процессоров для смартфонов, где был продемонстрирован 12% год к году. На второе место по объему выручки вышли решения для высокопроизводительных вычислений (HPC) – их доля составила 29%.
В начале мая 2020 г. CNews сообщил о том, что руководство TSMC ведет переговоры с властями США на предмет открытия производственных линий в Северной Америке. Таким образом США намерены обезопасить компании страны от трудностей на фоне пандемии коронавируса и закрытия границ, а также обеспечить безопасность американских военных проектов за счет минимизации попыток шпионажа.
В середине мая 2020 г. CNews сообщил о том, что руководство TSMC согласилась построить новую полупроводниковую фабрику в США. Спустя всего три дня после этого CNews сообщил об официальном отказе TSMC от сотрудничества с китайской компаний Huawei, которая заказывала у тайваньского производителя мобильные процессоры семейства Kirin. Отказ TSMC от сотрудничества с Huawei стал следствием ужесточения экспортного контроля со стороны США с целью дальнейшего ограничения доступа Huawei к основным мировым поставкам чипов.
Новый техпроцесс, старая стратегия
В настоящее время TSMC выпускает опытную продукцию с нормами 5 нм по технологии N5, полная ее коммерциализация запланирована на IV квартал 2020 г. Согласно опубликованным ранее официальным планам, TSMC также планирует завершить проектирование техпроцесса 3 нм до конца 2020 г. и запустить его опытную эксплуатацию в первом полугодии 2021 г.
Председатель правления TSMC Марк Лю на встрече с инвесторами
Анонс «секретного» техпроцесса N4 в определенной степени копирует привычную для TSMC стратегию оптимизации уже существующего техпроцесса N5. Именно так компания поступила при запуске техпроцесса N6 с нормами 6 нм, который представляет собой улучшенную версию оптимизированного техпроцесса N7+.
Главным преимуществом такого «плавного» перехода является возможность предоставить заказчикам улучшенную производительность и энергопотребление чипов при сохранении совместимости поколений процессоров и соответствующем снижении затрат на подготовку и запуск нового производства.
Какие бывают техпроцессы?
Ранние техпроцессы, до стандартизации NTRS (National Technology Roadmap for Semiconductors) и ITRS, обозначались «ХХ мкм» (мкм — микрометр), где ХХ обозначало техническое разрешение литографического оборудования. В 1970-х существовало несколько техпроцессов, в частности 10, 8, 6, 4, 3, 2 мкм. В среднем, каждые три года происходило уменьшение шага с коэффициентом 0,7.
За сорок лет развития технологий разрешение оборудования достигло значений в десятках нанометров: 32 нм, 28 нм, 22 нм, 20 нм, 16 нм, 14 нм. Если говорить про iPhone, то в пока ещё актуальном iPhone 8 используется процессор А11 Bionic, изготовленный по 10-нанометровому техпроцессу. Серийный выпуск продукции по нему начался в 2016 году тайваньской компанией TSMC, которая изготавливает процессоры и для iPhone 11.
TSMC — тайваньская компания по производству микроэлектроники, поставляющая Apple процессоры
16 апреля 2019 года компания TSMC анонсировала освоение 6-нанометрового технологического процесса, что позволяет повысить плотность упаковки элементов микросхем на 18%. Данный техпроцесс является более дешевой альтернативой 5-нанометровому техпроцессу, также позволяет легко масштабировать изделия, разработанные для 7 нм.
В первой половине 2019 года всё та же компания TSMC начала опытное производство чипов по 5-нм техпроцессу. Переход на эту технологию позволяет повысить плотность упаковки электронных компонентов по сравнению с 7-нанометровым техпроцессом на 80% и повысить быстродействие на 15%. Ожидается, что IPhone 2020 года получит процессор, созданный по новому техпроцессу, а не на втором поколении 7-нанометрового техпроцесса.
В начале 2018 года исследовательский центр imec в Бельгии и компания Cadence Design Systems создали технологию и выпустили первые пробные образцы микропроцессоров по технологии 3 нм. Судя по обычным темпах внедрения новых техпроцессов в серийное производство, ждать процессоров, изготовленных по 3-нанометровому техпроцессу, стоит не раньше 2023 года. Хотя Samsung уже к 2021 году намерена начать производство 3-нанометровой продукции с использованием технологии GAAFET, разработанной компанией IBM.
Три этапа стратегии
Процесс реализации стратегии на период 2020-2030 гг. разбит на три этапа. Первый этап, определенный 2020-2021 гг., предполагает рост доли российской электроники на внутреннем рынке главным образом за счет традиционных рынков, а также исполнения национальных проектов.
Первый этап также является подготовительным для продвижения на зарубежные рынки. Для него предполагается доработать технологии, правила, бизнес-модели, предложения по продуктам и сервисам, пересмотреть характер инвестиций в сторону их диверсификации.
Второй этап, под который отведен период 2022-2025 гг., ознаменуется усилением присутствия российской электроники на рынках и экспансия на новые международные рынки. Здесь допустимы комплексные предложения, партнерские программы с иностранными участниками, масштабирование инвестиций.
На третьем этапе – в 2026-2030 гг., прогнозируется устойчивый рост отрасли с лидирующими позициями на перспективных рынках. В стратегии также упомянуто «обеспечение глобального технологического лидерства».
До конца 2020 г. ожидается внесение изменений в госпрограмму «Развитие электронной и радиоэлектронной промышленности» для приведения технических параметров электроники в соответствие со стратегией.
На всех этапах предполагается разработка новых технологий, материалов, технологического и контрольно-измерительного оборудования, создание программно-аппаратных комплексов для реализации сквозных технологий: больших данных, нейротехнологий и искусственного интеллекта, систем распределенного реестра, квантовых технологий, компонентов робототехники и сенсорики, промышленного интернета, беспроводной связи, виртуальной и дополненной реальности.
Чем меньше нанометров в технологическом процессе, тем:
Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.
Ниже выделение тепла
Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка
При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.
Меньше потребление энергии
В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах
Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.
В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2020 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.
Хронология уменьшения размера технологического процесса
’70-е:
3 мкм — такого технологического процесса компания Zilog достигла в 1975 году, Intel — в 1979-м.
’80-е:
- 1,5 мкм — Intel уменьшила технологический процесс до этого уровня в 1982 году;
- 0,8 мкм — уровень Intel в конце 1980-х.
’90-е:
- 0,6–0,5 мкм — компании Intel и IBM находились на этом уровне в 1994–1995 годах;
- 350 нм — Intel, IBM, TSMC к 1997-му;
- 250 нм — Intel, 1998 год;
- 180 нм — Intel и AMD, 1999 год.
’00-е:
- 130 нм — этого уровня компании Intel, AMD достигли в 2001–2002 годах;
- 90 нм — Intel в 2002–2003 годах;
- 65 нм — Intel в 2004–2006 годах;
- 45–40 нм — Intel в 2006–2007 годах;
- 32–28 нм — Intel в 2009–2010 годах;
- 22–20 нм — Intel в 2009–2012 годах;
’10-е:
- 14–16 нм — Intel наладила производство таких процессоров к 2015 году;
- 10 нм — TSMC делала такие процессоры уже в 2016-м, а Samsung — в 2020 году;
- 7 нм — TSMC, 2020 год;
- 6 нм — TSMC только анонсировала такой технологический процесс в 2019 году;
- 5 нм — TSMC начала тестирование такого техпроцесса в 2019 году;
- 3 нм — Samsung обещает делать процессоры с таким технологическим процессом к 2021 году.
«Отстает» и отечественная производственная база
Отметим, что на перенос планов МЦСТ по выпуску «Эльбрус-32С»
с первоначально намеченного 2020 г. на 2025 г., за последние шесть лет могло
повлиять множество факторов. И по всей видимости, в аналогичных условиях
находится вся российская микроэлектронная отрасль.
В частности, по одной из презентаций МЦСТ от 2014 г. видно,
что многие планы компании на будущее были увязаны с развитием главного отечественного
непосредственного производителя микроэлектроники. На его мощностях МЦСТ намеревался
выпускать часть из будущих моделей.
В соответствии с ожиданиями МЦСТ, «Микрон» уже к 2017 г.
должен был освоить производство чипов по топологи в 45 нм, к 2019 г. — 32 нм, а
к 2021 г. — 20 нм. В реальности у «Микрона» сейчас налажен серийный выпуск по
90 нм и есть мощности, способные произвести процессоры по 65 нм для
опытно-конструкторских разработок.
Впрочем, «Эльбрус-32С» МЦСТ изначально собирался производить
на тайваньской фабрике TSMC.
Сферы использования
По заявлению IBM, двухнанометровые процессоры смогут ускорить вычисления в сфере искусственного интеллекта. Они также пригодятся в периферийных вычислениях и в ряде других областей. Сама IBM намерена использовать их в своих серверах Power Systems и мейнфреймах Z-серии.
IBM видит перспективы использования двухнанометровых чипов и в мобильных устройствах, например, в смартфонах. За счет пониженного потребления энергии новых процессоров мобильники, по ее подсчетам, нужно будет заряжать лишь раз в четыре дня.
Ноутбуки на двухнанометровых чипах получат прирост производительности (про их автономность IBM не упоминает), а автомобили с автопилотом благодаря им смогут быстрее обнаруживать и распознавать различные объекты на пути следования и реагировать на них.
Компания утверждает, что двухнанометровые чипы принесут пользу в освоении космоса, развитии квантовых вычислений и строительстве сотовых сетей пятого и шестого поколений. Также, по прогнозам главы IBM Research Дарио Гила (Dario Gil), их применение может положительно сказаться на снижении нагрузки на окружающую среду. Это может быть реализовано за счет перевода на них дата-центров, на которые сейчас приходится 1% мирового потребления электричества.
Так почему же эти новые процессы так важны?
Закон Мура, старое наблюдение о том, что количество транзисторов на чипе удваивается каждый год, а затраты вдвое сокращаются, удерживался в течение длительного времени. Еще в конце 90-х и начале 2000-х годов транзисторы сокращались вдвое каждые два года, что приводило к их значительному улучшению. Но дальнейшее уменьшение стало более сложным, и, например, мы не наблюдали уменьшения транзистора от Intel с 2014 года. Так что эти новые технологические процессы являются первыми крупными сокращениями за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.
С появлением новых процессоров AMD на 7-нм процессорах TSMC и чипов A12X Apple, у них появляется шанс обойти Intel по производительности и создать здоровую конкуренцию монополии этой компании на рынке. По крайней мере до тех пор, пока 10-нм чипы Intel «Sunny Cove» не начнут поступать в продажу.
Что такое «7 нм техпроцесс»?
Если говорить очень упрощённо, то процессор — это миллиарды крошечных транзисторов и электрических затворов, которые включаются и выключаются при выполнении операций. «7 нм» — это размер этих транзисторов в нанометрах. Для понимания масштабов стоит напомнить, что в одном миллиметре миллион нанометров, а человеческий волос толщиной 80000 — 110000 нанометров. Транзистором, напомню, называют радиоэлектронный компонент из полупроводника (материал, у которого удельная проводимость меняется от воздействия температуры, различных излучений и прочего), который от небольшого входного сигнала управляет значительным током в выходной цепи. Он используется для усиления, генерирования, коммутации и преобразования электрических сигналов. Сейчас транзистор является основой схемотехники подавляющего большинства электронных компонентов и интегральных микросхем. Размер транзистора полезно знать специалистам для оценки производительности конкретного процессора, ведь чем меньше транзистор, тем меньше требуется энергии для его работы.
Процессор A7, стоявший в iPhone 5S, производился по 28-нанометровому техпроцессу
При производстве полупроводниковых интегральных микросхем применяется фотолитография (нанесение материала на поверхности микросхемы при участии света) и литография (нанесение материала с помощью потока электронов, излучаемого катодом вакуумной трубки). Разрешающая способность в микрометрах и нанометрах оборудования для изготовления интегральных микросхем (так называемые «проектные нормы») и определяет размер транзистора, а с ним и название применяемого конкретного технологического процесса.
Читайте далее: В iPhone 11 появится новый сопроцессор для фото- и видеосъёмки
Что «nm» на самом деле означает
Процессоры выполнены с помощью фотолитографии, где образ процессора вытравливается на куске кремния. Точная методика выполнения этой операции обычно называется технологическим процессом и измеряется тем, насколько малым может быть изготовление транзисторов.
Поскольку более компактные транзисторы более энергоэффективны, они могут выполнять больше вычислений без перегрева, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет уменьшить размеры матрицы, что снижает затраты и может увеличить плотность при тех же размерах, а это означает увеличение количества ядер на чип.
Плотность 7 нм в два раза выше, чем у предыдущего 14 нм узла, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что значительно превосходит их предыдущие 32 ядра (и 28 ядра Intel).
Важно отметить, что, хотя Intel все еще находится на 14-нм процессоре, а AMD собирается запустить свои 7-нм процессоры очень скоро, это не означает, что AMD будут работать в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких маленьких масштабах эти значения уже не столь точны
Чем меньше нанометров в технологическом процессе, тем:
Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.
Ниже выделение тепла
Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка
При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.
Меньше потребление энергии
В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах
Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.
В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2020 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.
Семимильными шагами
Переход Samsung к 5 нм оказался стремительным – производство чипов по 7-нанометровым нормам компания запустила буквально осенью 2018 г. Это стало возможным, в частности, за счет сохранения совместимости с 7 нм проектных элементов (IP), инструментов проектирования и контроля процессов проектирования и производства.
Мобильные процессоры Samsung — небольшие, но в то же время мощные и сверхсовременные
Подобный подход позволил Samsung не только перейти на более перспективный техпроцесс раньше всех, но радикально снизить затраты на освоение новой технологии.
Между тем, нельзя не отметить, что в самых актуальных смартфонах Samsung серии Galaxy S10, несмотря на все достижения корейского вендора, используется процессор Exynos 9820, произведенный по 8-нанометровым нормам. И лишь для рынков США и Китая эти телефоны доступны с 7-нанометровым чипом, правда, уже с Qualcomm Snapdragon 855.
Что даёт 7 нм техпроцесс?
И вот мы пришли к самой интересной части. Что же даёт пользователю уменьшение размера транзисторов в процессоре его устройства?
iPhone 11 с процессором A13 Bionic, изготовленном на 2 втором поколении 7-нанометрового техпроцесса
Одним словом, внедрение более современных технологических процессов даст нам увеличение времени работы iPhone и iPad от батареи при одинаковой производительности (следовательно, не надо раздувать размеры устройств для больших аккумуляторов), а также гораздо более мощные процессоры для MacBook. Мы уже видели, как чип A12X от Apple обходил некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри iPad Pro (2018).
Чтобы всегда быть в курсе современных технологий, обязательно подпишитесь на Telegram-канал AppleInsider.ru.
Новые графические ускорители Vega и планы на будущее
Новые графические ускорители Radeon Instinct MI60 и MI50, предназначенные для обработки сложных задач, в том числе, с искусственным интеллектом, выполнены на базе первых в мире графических процессоров на базе улучшенной архитектуры Vega с нормами 7 нм.
Графический ускоритель Radeon Instinct MI60
Чип флагманского ускорителя, Vega 20, по данным компании, содержит 13,28 млрд транзисторов при габаритах 331 кв. мм. Чип Vega 10 содержит 12,5 млрд транзисторов.
Структура графического процессора AMD Vega 20
Графический ускоритель Radeon Instinct MI60 с 4096 потоковыми процессорами на частоте до 1800 МГц оснащен памятью HBM2 емкостью 32 ГБ с пропускной способностью шины 1 ТБ/с, ускоритель Radeon Instinct MI50 с 3840 потоковыми процессорам при частоте до 1746 МГц оснащается 16 ГБ аналогичной памяти. Термопакет обоих решений, по данным AMD, не превышает 300 Вт.
Первая в индустрии поддержка шины PCIe 4.0
Для ускорителей Instinct MI60 и MI50 заявлена поддержка интерфейса PCIe 4.0 x16, однако также есть поддержка двух линий шины Infinity Fabric через внешнюю шину PCIe. Благодаря обмену данными между картами со скоростью до 200 ГБ/с есть возможность объединить из в вычислительные блоки количеством до четырех карт.
Для ускорителя MI60 заявлена производительность до 7,4 Тфлопс, при 64-битных вычислениях с плавающей запятой (FP64) и до 14,7 Тфлопс в режиме FP32, для ускорителя MI50 заявлена производительностью до 6,7 Тфлопс и 13,4 Тфлопс, соответственно.
Ближайшие планы AMD
Говоря о ближайших перспективах, представители AMD объявили о планах начать поставки ускорителей MI60 до конца 2018 г. Следующее графическое решение компании, согласно объявленным планам, пока носит рабочее название MI-Next, однако никаких технических деталей или сроков выпуска о новинке не объявлено.
Где применяются процессоры
Нас окружают гаджеты! Они повсюду и уже не просто окружили нас, а буквально взяли в заложники — мы без них не можем. В каждом из них есть процессор. Иногда все ограничивается только им и другие чипы уже выполнены с ним ”в одном флаконе”. Иногда отдельно вынесены такие элементы, как видеокарта или что-то в этом духе, но любой вычислительный элемент состоит их огромного количества транзисторов.
Когда выходит новый смартфон, компьютер, ноутбук или что-то в этом духе, производитель указывает загадочные нанометры, количество которых с каждым годом уменьшается и это считается хорошим знаком и признаком технологичности. Наверное, это единственный показатель, уменьшение которого является хорошим.
Эти самые нанометры называют технологическим процессом или сокращенно техпроцессом. Что же это такое?
Что такое техпроцесс
Подавляющее большинство пользователей никогда не видели процессор, кроме, как на картинках. Некоторым посчастливилось увидеть его вживую, но не более, чем его теплораспределительную панель. Для сравнения, это как познакомиться с девушкой, но увидеть ее только в лыжном костюме. Самое интересное находится под этой пластиной. Именно там зарождается магия производительности.
Именно под пластиной расположен кристалл процессора. Он представляет из себя миллиарды даже не миниатюрных, а микроскопических транзисторов, расстояние между ними и определяется техпроцессом.
Обычно мы видим только крышку процессора, а под ней всегда самое интересное.
Самые современные процессоры (из тех, что поступили в промышленное производство) сейчас имеют 7-нанометровый (7-нм) техпроцесс. Такими технологиями на данный момент достаточно хорошо овладела тайваньская компания TSMC, которая производит чипсеты по заказу крупнейших мировых производителей, таких, как Apple, Huawei и Qualcomm. Последняя и вовсе обеспечивает львиную долю процессоров для производителей совершенно разных смартфонов на Android.
При этом, нельзя не отметить, что большее значение техпроцесса не означает, что на чипе будет меньше транзисторов. Это своим примером доказала Intel, у которой пока не очень хорошо с технологией 7 нанометров.